The original remote control that comes with the helicopter is pretty good, at least a lot easier to use than a touchscreen.
However, our passion doesn't end here with mere manual control. Inspired by all those robodance projects, we need more joy of robotic automation.
Let's hack the SYMA S107 helicopter to give it some artificial intelligence!
You might wonder why this particular model (Syma S107)? Well, simply because it is perhaps the most popular one in the IR helicopter market. And many brilliant hackers have already done the work for us. We don't have to reinvent the wheel to hack it again.
As usual, let's start with an Arduino, the most simple way to prototype electronic projects. Our goal here is to make an arduino based IR transmitter to programmatically control the helicopter.
Step 1. Prepare the circuit
The circuit is extremely simple, we just need:
1 Arduino, 1 IR LED and 1 resister of 200 to 1000 ohm.
Optional: an IR receiver (for testing).
That's all to transmit IR signal from Arduino to the helicopter. If you already have an Arduino board, it costs you almost nothing to get the rest parts.
If you are interested in IR tests, here is a detailed tutorial: http://www.ladyada.net/learn/sensors/ir.html
Otherwise, we can directly load the Arduino code and control the helicopter!
Step 2. Program the Arduino
Fortunately, there are several existing Arduino projects we can directly use and customize.
The first working code (tested):
//Arduino code to control a helicotper. int IRledPin = 12; int incomingByte = 0; String incomingString; int pulseValues[33]; int pulseLength = 0; void setup() { // initialize the IR digital pin as an output: pinMode(IRledPin, OUTPUT); pinMode(13, OUTPUT); Serial.begin(9600); for (int i=0; i < 13; i++) pulseValues[i] = 0; } void loop() { SendCode(); } void pulseIR(long microsecs) { cli(); // this turns off any background interrupts while (microsecs > 0) { // 38 kHz is about 13 microseconds high and 13 microseconds low digitalWrite(IRledPin, HIGH); // this takes about 3 microseconds to happen delayMicroseconds(10); // hang out for 10 microseconds digitalWrite(IRledPin, LOW); // this also takes about 3 microseconds delayMicroseconds(10); // hang out for 10 microseconds // so 26 microseconds altogether microsecs -= 26; } sei(); // this turns them back on } void Zero() { pulseIR(300); delayMicroseconds(300); pulseLength += 600; } void One() { pulseIR(300); delayMicroseconds(600); pulseLength += 900; } void sendPulseValue(int pulseValue) { if (pulseValue == 1) One(); else Zero(); } void checkPulseChanges() { if (Serial.available() > 0) { incomingByte = Serial.read(); //Pulse 1 if (incomingByte == 'a') pulseValues[0] = 0; if (incomingByte == 'A') pulseValues[0] = 1; //Pulse 2 if (incomingByte == 'b') pulseValues[1] = 0; if (incomingByte =='B') pulseValues[1] = 1; //Pulse 3 if (incomingByte == 'c') pulseValues[2] = 0; if (incomingByte == 'C') pulseValues[2] = 1; //Pulse 4 if (incomingByte == 'd') pulseValues[3] = 0; if (incomingByte == 'D') pulseValues[3] = 1; //Pulse 5 if (incomingByte == 'e') pulseValues[4] = 0; if (incomingByte == 'E') pulseValues[4] = 1; //Pulse 6 if (incomingByte == 'f') pulseValues[5] = 0; if (incomingByte == 'F') pulseValues[5] = 1; //Pulse 7 if (incomingByte == 'g') pulseValues[6] = 0; if (incomingByte == 'G') pulseValues[6] = 1; //Pulse 8 if (incomingByte == 'h') pulseValues[7] = 0; if (incomingByte == 'H') pulseValues[7] = 1; //Pulse 9 if (incomingByte == 'i') pulseValues[8] = 0; if (incomingByte == 'I') pulseValues[8] = 1; //Pulse 10 if (incomingByte == 'j') pulseValues[9] = 0; if (incomingByte == 'J') pulseValues[9] = 1; //Pulse 11 if (incomingByte == 'k') pulseValues[10] = 0; if (incomingByte == 'K') pulseValues[10] = 1; //Pulse 12 if (incomingByte == 'l') pulseValues[11] = 0; if (incomingByte == 'L') pulseValues[11] = 1; //Pulse 13 if (incomingByte == 'm') pulseValues[12] = 0; if (incomingByte == 'M') pulseValues[12] = 1; //Pulse 14 if (incomingByte == 'o') pulseValues[13] = 0; if (incomingByte == 'O') pulseValues[13] = 1; //Pulse 15 if (incomingByte == 'p') pulseValues[14] = 0; if (incomingByte == 'P') pulseValues[14] = 1; //Pulse 16 if (incomingByte == 'q') pulseValues[15] = 0; if (incomingByte == 'Q') pulseValues[15] = 1; //Pulse 17 if (incomingByte == 'r') pulseValues[16] = 0; if (incomingByte == 'R') pulseValues[16] = 1; //Pulse 18 if (incomingByte == 's') pulseValues[17] = 0; if (incomingByte == 'S') pulseValues[17] = 1; //Pulse 19 if (incomingByte == 't') pulseValues[18] = 0; if (incomingByte == 'T') pulseValues[18] = 1; //Pulse 20 if (incomingByte == 'u') pulseValues[19] = 0; if (incomingByte == 'U') pulseValues[19] = 1; //Pulse 21 if (incomingByte == 'v') pulseValues[20] = 0; if (incomingByte == 'V') pulseValues[20] = 1; //Pulse 22 if (incomingByte == 'w') pulseValues[21] = 0; if (incomingByte == 'W') pulseValues[21] = 1; //Pulse 23 if (incomingByte == 'x') pulseValues[22] = 0; if (incomingByte == 'X') pulseValues[22] = 1; //Pulse 24 if (incomingByte == 'y') pulseValues[23] = 0; if (incomingByte == 'Y') pulseValues[23] = 1; //Pulse 25 if (incomingByte == 'z') pulseValues[24] = 0; if (incomingByte == 'Z') pulseValues[24] = 1; //Pulse 26 if (incomingByte == '1') pulseValues[25] = 0; if (incomingByte == '2') pulseValues[25] = 1; //Pulse 27 if (incomingByte == '3') pulseValues[26] = 0; if (incomingByte == '4') pulseValues[26] = 1; //Pulse 28 if (incomingByte == '5') pulseValues[27] = 0; if (incomingByte == '6') pulseValues[27] = 1; //Pulse 29 if (incomingByte == '7') pulseValues[28] = 0; if (incomingByte == '8') pulseValues[28] = 1; //Pulse 30 if (incomingByte == '9') pulseValues[29] = 0; if (incomingByte == '!') pulseValues[29] = 1; //Pulse 31 if (incomingByte == '@') pulseValues[30] = 0; if (incomingByte == '#') pulseValues[30] = 1; //Pulse 32 if (incomingByte == '$') pulseValues[31] = 0; if (incomingByte == '%') pulseValues[31] = 1; //Pulse 33 if (incomingByte == '^') pulseValues[32] = 0; if (incomingByte == '&') pulseValues[32] = 1; } } void SendCode() { while (true) { checkPulseChanges(); pulseIR(4000); delayMicroseconds(2000); pulseLength=6000; sendPulseValue(pulseValues[0]); sendPulseValue(pulseValues[1]); sendPulseValue(pulseValues[2]); sendPulseValue(pulseValues[3]); sendPulseValue(pulseValues[4]); sendPulseValue(pulseValues[5]); sendPulseValue(pulseValues[6]); sendPulseValue(pulseValues[7]); sendPulseValue(pulseValues[8]); sendPulseValue(pulseValues[9]); sendPulseValue(pulseValues[10]); sendPulseValue(pulseValues[11]); sendPulseValue(pulseValues[12]); sendPulseValue(pulseValues[13]); sendPulseValue(pulseValues[14]); sendPulseValue(pulseValues[15]); sendPulseValue(pulseValues[16]); sendPulseValue(pulseValues[17]); sendPulseValue(pulseValues[18]); sendPulseValue(pulseValues[19]); sendPulseValue(pulseValues[20]); sendPulseValue(pulseValues[21]); sendPulseValue(pulseValues[22]); sendPulseValue(pulseValues[23]); sendPulseValue(pulseValues[24]); sendPulseValue(pulseValues[25]); sendPulseValue(pulseValues[26]); sendPulseValue(pulseValues[27]); sendPulseValue(pulseValues[28]); sendPulseValue(pulseValues[29]); sendPulseValue(pulseValues[30]); sendPulseValue(pulseValues[31]); //Footer pulseIR(360); delayMicroseconds( (28600 - pulseLength) ); } }
This is the processing code to control the helicopter using the PC's camera and mouse wheel:
import processing.serial.*; import controlP5.*; import JMyron.*; JMyron m; ControlP5 controlP5; CheckBox checkbox; Button b; float boxX; float boxY; int boxSize = 20; boolean mouseOverBox = false; byte[] previousFlags = new byte[32]; byte[] flagsToSend = new byte[32]; Serial port; String outString; int helicopterUpSpeed = 0; int helicopterPitch = 63; int helicopterYaw = 68; void setup() { m = new JMyron(); m.start(640,480); size(640, 480); controlP5 = new ControlP5(this); checkbox = controlP5.addCheckBox("checkBox", 20, 20); // make adjustments to the layout of a checkbox. checkbox.setColorForeground(color(120)); checkbox.setColorActive(color(255)); checkbox.setColorLabel(color(128)); checkbox.setItemsPerRow(8); checkbox.setSpacingColumn(30); checkbox.setSpacingRow(10); // add items to a checkbox. checkbox.addItem("1", 0); checkbox.addItem("2", 0); checkbox.addItem("3", 0); checkbox.addItem("4", 0); checkbox.addItem("5", 0); checkbox.addItem("6", 0); checkbox.addItem("7", 0); checkbox.addItem("8", 0); checkbox.addItem("9", 0); checkbox.addItem("10", 0); checkbox.addItem("11", 0); checkbox.addItem("12", 0); checkbox.addItem("13", 0); checkbox.addItem("14", 0); checkbox.addItem("15", 0); checkbox.addItem("16", 0); checkbox.addItem("17", 0); checkbox.addItem("18", 0); checkbox.addItem("19", 0); checkbox.addItem("20", 0); checkbox.addItem("21", 0); checkbox.addItem("22", 0); checkbox.addItem("23", 0); checkbox.addItem("24", 0); checkbox.addItem("25", 0); checkbox.addItem("26", 0); checkbox.addItem("27", 0); checkbox.addItem("28", 0); checkbox.addItem("29", 0); checkbox.addItem("30", 0); checkbox.addItem("31", 0); checkbox.addItem("32", 0); checkbox.deactivateAll(); controlP5.addButton("Up", 0, 120, 120, 35, 20); controlP5.addButton("Down", 0, 120, 160, 35, 20); controlP5.addButton("Forward", 0, 180, 120, 45, 20); controlP5.addButton("Backward", 0, 180, 160, 45, 20); controlP5.addButton("TurnLeft", 0, 60, 120, 40, 20); controlP5.addButton("TurnRight", 0, 60, 160, 40, 20); port = new Serial(this, Serial.list()[0], 9600); for (int i=0;i<32;i++) { flagsToSend[i] = 0; previousFlags[i] = 0; } addMouseWheelListener(new java.awt.event.MouseWheelListener() { public void mouseWheelMoved(java.awt.event.MouseWheelEvent evt) { mouseWheel(evt.getWheelRotation()); } } ); startSetUp(); } String addForwardZeroesTT(String inputString, int totalLength) { String outString = ""; for (int i = 0; i < (totalLength - inputString.length()); i++) outString += "0"; outString = outString + inputString; return outString; } //Incremental like bits //0000, 0001, 0010, 0011, 0100, etc void Up() { String currentSpeed = addForwardZeroesTT(binary(helicopterUpSpeed), 7); if(helicopterUpSpeed <= 125) helicopterUpSpeed += 1; String newSpeed = addForwardZeroesTT(binary(helicopterUpSpeed), 7); setNewSpeed(currentSpeed, newSpeed); } void Down() { String currentSpeed = addForwardZeroesTT(binary(helicopterUpSpeed), 7); if (helicopterUpSpeed > 0) helicopterUpSpeed -= 1; String newSpeed = addForwardZeroesTT(binary(helicopterUpSpeed), 7); setNewSpeed(currentSpeed, newSpeed); } void Backward() { String currentSpeed = addForwardZeroesTT(binary(helicopterPitch), 7); helicopterPitch += 1; String newSpeed = addForwardZeroesTT(binary(helicopterPitch), 7); setNewPitch(currentSpeed, newSpeed); } void Forward() { String currentSpeed = addForwardZeroesTT(binary(helicopterPitch), 7); helicopterPitch -= 1; String newSpeed = addForwardZeroesTT(binary(helicopterPitch), 7); setNewPitch(currentSpeed, newSpeed); } void TurnLeft() { String currentSpeed = addForwardZeroesTT(binary(helicopterYaw), 7); helicopterYaw -= 1; String newSpeed = addForwardZeroesTT(binary(helicopterYaw), 7); setNewYaw(currentSpeed, newSpeed); } void TurnRight() { String currentSpeed = addForwardZeroesTT(binary(helicopterYaw), 7); helicopterYaw += 1; String newSpeed = addForwardZeroesTT(binary(helicopterYaw), 7); setNewYaw(currentSpeed, newSpeed); } void setNewSpeed(String currentSpeed, String newSpeed) { //Compare each bit and see if it needs changing. if (newSpeed.charAt(6) != currentSpeed.charAt(6) ) checkbox.toggle(23); if (newSpeed.charAt(5) != currentSpeed.charAt(5) ) checkbox.toggle(22); if (newSpeed.charAt(4) != currentSpeed.charAt(4) ) checkbox.toggle(21); if (newSpeed.charAt(3) != currentSpeed.charAt(3) ) checkbox.toggle(20); if (newSpeed.charAt(2) != currentSpeed.charAt(2) ) checkbox.toggle(19); if (newSpeed.charAt(1) != currentSpeed.charAt(1) ) checkbox.toggle(18); if (newSpeed.charAt(0) != currentSpeed.charAt(0) ) checkbox.toggle(17); } void setNewPitch(String currentSpeed, String newSpeed) { if (newSpeed.charAt(6) != currentSpeed.charAt(6) ) checkbox.toggle(15); if (newSpeed.charAt(5) != currentSpeed.charAt(5) ) checkbox.toggle(14); if (newSpeed.charAt(4) != currentSpeed.charAt(4) ) checkbox.toggle(13); if (newSpeed.charAt(3) != currentSpeed.charAt(3) ) checkbox.toggle(12); if (newSpeed.charAt(2) != currentSpeed.charAt(2) ) checkbox.toggle(11); if (newSpeed.charAt(1) != currentSpeed.charAt(1) ) checkbox.toggle(10); if (newSpeed.charAt(0) != currentSpeed.charAt(0) ) checkbox.toggle(9); } void setNewYaw(String currentSpeed, String newSpeed) { if (newSpeed.charAt(6) != currentSpeed.charAt(6) ) checkbox.toggle(7); if (newSpeed.charAt(5) != currentSpeed.charAt(5) ) checkbox.toggle(6); if (newSpeed.charAt(4) != currentSpeed.charAt(4) ) checkbox.toggle(5); if (newSpeed.charAt(3) != currentSpeed.charAt(3) ) checkbox.toggle(4); if (newSpeed.charAt(2) != currentSpeed.charAt(2) ) checkbox.toggle(3); if (newSpeed.charAt(1) != currentSpeed.charAt(1) ) checkbox.toggle(2); if (newSpeed.charAt(0) != currentSpeed.charAt(0) ) checkbox.toggle(1); } void startSetUp() { //First clear the arduino. port.write('a'); port.write('b'); port.write('c'); port.write('d'); port.write('e'); port.write('f'); port.write('g'); port.write('h'); port.write('i'); port.write('j'); port.write('k'); port.write('l'); port.write('m'); port.write('o'); port.write('p'); port.write('q'); port.write('r'); port.write('s'); port.write('t'); port.write('u'); port.write('v'); port.write('w'); port.write('x'); port.write('y'); port.write('z'); port.write('1'); port.write('3'); port.write('5'); port.write('7'); port.write('9'); port.write('@'); port.write('$'); port.write('^'); //Set the pulse to the basic configuration. checkbox.toggle(1); checkbox.toggle(6); checkbox.toggle(10); checkbox.toggle(11); checkbox.toggle(12); checkbox.toggle(13); checkbox.toggle(14); checkbox.toggle(15); checkbox.toggle(16); checkbox.toggle(25); checkbox.toggle(28); checkbox.toggle(29); checkbox.toggle(30); } void draw() { background(200); m.update(); int[] img = m.image(); //first draw the camera view onto the screen loadPixels(); for(int i=0;i<640*480;i++){ pixels[i] = img[i]; } updatePixels(); noFill(); int[][] a; CheckHelicopterPosition(); text(" Current Speed: " + helicopterUpSpeed, 230, 135); text(" Pitch: " + helicopterPitch, 230, 165); text(" Yaw: " + helicopterYaw, 230, 195); } void CheckHelicopterPosition() { noFill(); int[][] a; m.trackColor(255,255,0,255); //draw bounding boxes of globs a = m.globBoxes(); stroke(255,0,0); int averageY = 0; for(int i=0;i<a.length;i++){ int[] b = a[i]; rect(b[0], b[1], b[2], b[3]); averageY += b[1]; } if (a.length > 0) { averageY = averageY / a.length; line(0,averageY,640,averageY); text(" Average Y: " + averageY, 230, 215); if (averageY > 240) { text(" Action: up ", 350, 20); delay(150); //Up(); } else { text(" Action down ", 350,20); //delay(250); //Down(); } } } void controlEvent(ControlEvent theEvent) { if (theEvent.isGroup()) { for (int i=0;i<theEvent.group().arrayValue().length;i++) { byte n = (byte)theEvent.group().arrayValue()[i]; flagsToSend[i] = n; //there was a change in the flags, send the update. if (previousFlags[i] != flagsToSend[i]) { println(i); if (i==0) { if (n == 0) { port.write('a'); } else { port.write('A'); } } if (i==1) { if (n == 0) { port.write('b'); } else { port.write('B'); } } if (i==2) { if (n == 0) { port.write('c'); } else { port.write('C'); } } if (i==3) { if (n == 0) { port.write('d'); } else { port.write('D'); } } if (i==4) { if (n == 0) { port.write('e'); } else { port.write('E'); } } if (i==5) { if (n == 0) { port.write('f'); } else { port.write('F'); } } if (i==6) { if (n == 0) { port.write('g'); } else { port.write('G'); } } if (i==7) { if (n == 0) { port.write('h'); } else { port.write('H'); } } if (i==8) { if (n == 0) { port.write('i'); } else { port.write('I'); } } if (i==9) { if (n == 0) { port.write('j'); } else { port.write('J'); } } if (i==10) { if (n == 0) { port.write('k'); } else { port.write('K'); } } if (i==11) { if (n == 0) { port.write('l'); } else { port.write('L'); } } if (i==12) { if (n == 0) { port.write('m'); } else { port.write('M'); } } if (i==13) { if (n == 0) { port.write('o'); } else { port.write('O'); } } if (i==14) { if (n == 0) { port.write('p'); } else { port.write('P'); } } if (i==15) { if (n == 0) { port.write('q'); } else { port.write('Q'); } } if (i==16) { if (n == 0) { port.write('r'); } else { port.write('R'); } } if (i==17) { if (n == 0) { port.write('s'); } else { port.write('S'); } } if (i==18) { if (n == 0) { port.write('t'); } else { port.write('T'); } } if (i==19) { if (n == 0) { port.write('u'); } else { port.write('U'); } } if (i==20) { if (n == 0) { port.write('v'); } else { port.write('V'); } } if (i==21) { if (n == 0) { port.write('w'); } else { port.write('W'); } } if (i==22) { if (n == 0) { port.write('x'); } else { port.write('X'); } } if (i==23) { if (n == 0) { port.write('y'); } else { port.write('Y'); } } if (i==24) { if (n == 0) { port.write('z'); } else { port.write('Z'); } } if (i==25) { if (n == 0) { port.write('1'); } else { port.write('2'); } } if (i==26) { if (n == 0) { port.write('3'); } else { port.write('4'); } } if (i==27) { if (n == 0) { port.write('5'); } else { port.write('6'); } } if (i==28) { if (n == 0) { port.write('7'); } else { port.write('8'); } } if (i==29) { if (n == 0) { port.write('9'); } else { port.write('!'); } } if (i==30) { if (n == 0) { port.write('@'); } else { port.write('#'); } } if (i==31) { if (n == 0) { port.write('$'); } else { port.write('%'); } } if (i==32) { if (n == 0) { port.write('^'); } else { port.write('&'); } } } previousFlags[i]=n; } } } void mouseWheel(int delta) { if (delta == 1) Down(); else Up(); }We have tested it. It worked like a charm. Exactly as the project creator says:
"Utilizing the input from the webcam, it adjusts the speed until the helicopter is in the middle of the screen.
If it goes too high, it lowers the speed. If it gets too low or is stopped, it slowly increases the upwards speed."
For more details on this project, please have a glance here: http://www.avergottini.com/2011/05/arduino-helicopter-infrared-controller.html
The second working code (not yet tested by DIY Phone Gadgets):
Of course, your SYMA S107 helicopter might not always be exactly the same as others'. The first code might not work for your helicopter. Don't worry, it is possible that you have a 3-channel (30-bit) version, which uses a different protocol. Just load the following Arduino code:
/* S107 3-channel with checksum helicopter control code * Copyright (C) 2012, Andrew Barry, Dan Barry * * Uses an Arduino to control a S107 helicopter * * * Instructions: * Connect an IR LED array to pin 8 (using a FET to amplify the signal) * and use the serial monitor to send commands to the system * */ #define LED 8 #define STATUS 13 //#define TAKEOFF_THROTTLE 240 //#define HOLDING_THROTTLE 130 byte yawCmd, pitchCmd, throttleCmd, trimCmd; // Set this value for the default channel // A = 0 // B = 1 // C = 2 byte channel = 0; /* * Setup function that initializes the serial port and * sets some default values for the control variables. * Also sets up the pins we'll be using. */ void setup() { Serial.begin(9600); pinMode(STATUS,OUTPUT); digitalWrite(STATUS,LOW); pinMode(LED,OUTPUT); digitalWrite(LED,LOW); yawCmd = 8; pitchCmd = 8; trimCmd = 0; throttleCmd = 0; Serial.println("throttle = 0, standing by for commands."); } /* * Function that does the actual work of converting commands into * IR LED pulses and changes the pins in the appropriate manner. */ byte sendPacket(byte yaw, byte pitch, byte throttle, byte trim) { int packetData[100]; int pulseNum; digitalWrite(STATUS,HIGH); float channelDelayValue = 136500; // channel A B or C // A is 10 with 136500us packet delay // B is 01 with 105200us packet delay // C is 11 with 168700us packet delay if (channel == 0) { packetData[0] = 1; packetData[1] = 0; channelDelayValue = 136500; } else if (channel == 1) { packetData[0] = 0; packetData[1] = 1; channelDelayValue = 105200; } else { packetData[0] = 1; packetData[1] = 1; channelDelayValue = 168700; } packetData[2] = 0; packetData[3] = 0; // pitch packetData[7] = (pitch & 0b1000) >> 3; // direction bit if (pitch < 8) { pitch = 8 - pitch; } packetData[6] = (pitch & 0b0100) >> 2; // others are speed bits, note that they are reversed packetData[5] = (pitch & 0b0010) >> 1; packetData[4] = (pitch & 0b0001); // throttle // bits are reversed in the throttle command packetData[15] = (throttle & 0b10000000) >> 7; packetData[14] = (throttle & 0b01000000) >> 6; packetData[13] = (throttle & 0b00100000) >> 5; packetData[12] = (throttle & 0b00010000) >> 4; packetData[11] = (throttle & 0b00001000) >> 3; packetData[10] = (throttle & 0b00000100) >> 2; packetData[9] = (throttle & 0b00000010) >> 1; packetData[8] = (throttle & 0b00000001); // yaw packetData[19] = (yaw & 0b1000) >> 3; // direction bit if (yaw < 8) { yaw = 8 - yaw; } packetData[18] = (yaw & 0b0100) >> 2; packetData[17] = (yaw & 0b0010) >> 1; packetData[16] = (yaw & 0b0001); // these 4 bits are the checksum, so make sure they // are 0s so they don't change the XOR later on packetData[20] = 0; packetData[21] = 0; packetData[22] = 0; packetData[23] = 0; // yaw trim / yaw adjust (the little dial on the controller) // 6 bits packetData[24] = 0; packetData[25] = 0; packetData[26] = 0; packetData[27] = 0; packetData[28] = 0; packetData[29] = 0; // these bits are never sent but we do the checksum // computation in 4-bit chunks, with the trailing two // bits set to zero, so we set them to zero here to make // the checksum a bit easier to compute packetData[30] = 0; packetData[31] = 0; int i; int checksum[10]; checksum[0] = 0; checksum[1] = 0; checksum[2] = 0; checksum[3] = 0; // compute checksum -- bitwise XOR of 4-bit chunks // with two zeros padding the *end* of the last two bits for (i=0; i 0) { if (Serial.available() == true) { Serial.println("HOLD ABORTED"); break; } packetDelay = sendPacket(yawIn, pitchIn, throttleIn, trimCmd); delayTime = delayTime - packetDelay; delay(packetDelay); delay(delayAmount); delayTime = delayTime - delayAmount; } Serial.println("Done holding."); } void Land() { static int i; Serial.println("Landing"); for(i=throttleCmd;i>0;i--){ HoldCommand(8,8,throttleCmd,50); } throttleCmd = 0; } /* * Function that manages receiving data from the serial port. * Mostly changes the global variables that are passed to the * control functions. */ void serialEvent() { char cmd = Serial.read(); Serial.println(); Serial.print("command received is "); Serial.println(cmd); switch (cmd) { // Take off with 't' case 't': Serial.println("Taking Off"); // Yaw: 1-15 // 8 = no turn // 1 = max right turn // 15 = max left turn // // Pitch: 1-15 // 8 = no pitch // 15 = max forward // 1 = max backwards // // Throttle: 0-255 // 0 = off // ~130 = steady flight // ~240 = fast climb // First, go up with lots of throttle for 650ms // yaw: 8 --> no yaw // pitch: 8 --> no pitch // throttle: 240 --> fast climb // delay: 650ms --> enough time to climb, not too long so won't hit ceiling // HoldCommand: a function that sends the same data for a given amount of time // HoldCommand(yaw, pitch, throttle, time-to-hold-in-ms); HoldCommand(8, 8, 240, 650); // set the *global* throttle to steady flight throttle throttleCmd = 130; break; // land with 'x' or 'q' case 'x': case 'q': Land(); break; // throttle commands case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': throttleCmd = atoi(&cmd) * 25; //single character, so we can go from 0 to 255 by inputting 0 to 9 in the serial monitor break; // turn left case 'a': if (yawCmd < 15) { yawCmd ++; } Serial.print("Yaw is "); Serial.println(yawCmd); break; // turn right case 'd': if (yawCmd > 1) { yawCmd --; } Serial.print("Yaw is "); Serial.println(yawCmd); break; // move forwards case 'w': if (pitchCmd < 15){ pitchCmd ++; // moves forward } Serial.print("Pitch is "); Serial.println(pitchCmd); break; // move backwards case 's': if (pitchCmd > 1) { pitchCmd --; // moves backward } Serial.print("Pitch is "); Serial.println(pitchCmd); break; // increase throttle case 'u': if (throttleCmd < 255 - 6) { throttleCmd += 6; } Serial.print("Throttle is "); Serial.println(throttleCmd); break; // decrease throttle case 'j': if (throttleCmd > 6) { throttleCmd -= 6; } Serial.print("Trottle is "); Serial.println(throttleCmd); break; // change channel case 'c': Serial.println("Changing channel"); if (channel >= 2) { channel = 0; } else { channel ++; } Serial.print("Channel is: "); Serial.println(channel); break; // reset yaw and pitch case 'r': Serial.println("resetting yaw and pitch"); yawCmd = 8; pitchCmd = 8; break; default: Serial.println("Unknown command"); } Serial.print("Throttle is at "); Serial.println(throttleCmd); } /* * Loops continuously sending and delaying for the transmission */ void loop() { // Note that serialEvent() gets called on each path of the loop // and runs if there is data at the serial port // we call delay here on the return value of sendPacket because that will // cause us to put the right amount of time between packets. The delay is // not constant, but is instead based on how long the packet was // that we sent delay(sendPacket(yawCmd, pitchCmd, throttleCmd, trimCmd)); }
To use the code, open the Serial Monitor (Tools > Serial Monitor) and use the following commands:
0-9: throttle
w: forward
a: left
s: backwards
d: right
t: take off
u: increase throttle
j: decrease throttle
r: reset pitch and yaw
For more details on this project, please go to:
http://www.abarry.org/likelytobeforgotten/?p=55
What's next?
Now that we can successfully send programmatical commands from Arduino, we can take advantage of the solutions we have learned here in DIY Phone Gadgets to control the IR helicopter using PCs, game consoles, Kinect, tablets, smartphones or whatever electronic gadgets.
Here is a project using Kinect:
Here is a project using brain (your mind) to control a helicopter:
Or a Nunchuk-Wiimote-controlled helicopter, if you need more accuracy:
How to decode IR signal (very useful if you don't have a SYMA S107):
Of course, you can always decode the IR signal from scratch, if your helicopter is not SYMA S107. Here is a great video tutorial:
Here is the project owner's original blog: http://technologyonmymind.blogspot.fr/2012/03/helicopter-auto-pilot-introduction.html
DIY Phone-controlled helicopters with Arduino:
Needless to say, using Arduino as a bridge, we can easily control helicopters. Here is "Yan's helicopter Controller" from DIY Phone Gadgets.
Here is how it works:
1. The Android phone is controlling the Arduino using bluetooth.
2. Arduino is controlling the original helicopter transmitter.
3. The transmitter is programmatically controlling the helicopter.
DIY Phone-controlled helicopters with audio dongle:
There are already some fantastic existing tools in the toy market that are really helpful. Like these audio jack dongles:
These dongles capture the audio signal in the 3.5 audio jack and translate the audio signal into wireless signal.
For normal users, these dongles are just wireless transmitters, compatible with Android or iPhone apps. They can use it to control the helicopter with their smartphones.
For DIYers, the dongles should be capable of transmitting IR or other wireless signals from any smartphone or tablet (Android, iPhone, Blackberry or Windows Phone). You simply produce programmatically some audio sound from the phone. To make a touchscreen controller is so boring because the physical joysticks are way better and more precise. A phone should be a mobile command station to interact with the helicopter with a lot more intelligence. The helicopter should be able to dance with your own written program!
The easiest way to get these dongles is searching "iPhone Android Helicopter" on eBay. Then write your iOS or Android code to produce some audio signal, control your TV, fly your helicopter! Don't forget to share your exciting discoveries with the DIY Phone Gadgets community.
Imagine that you are playing your favorite music while watching a bunch of helicopters dancing in the sky, following the melody and rhythm. Yes, that's so geeky. But you are so happy. What's more beautiful than a creative mind?
Of course, you can always decode the IR signal from scratch, if your helicopter is not SYMA S107. Here is a great video tutorial:
Here is the project owner's original blog: http://technologyonmymind.blogspot.fr/2012/03/helicopter-auto-pilot-introduction.html
DIY Phone-controlled helicopters with Arduino:
Needless to say, using Arduino as a bridge, we can easily control helicopters. Here is "Yan's helicopter Controller" from DIY Phone Gadgets.
Here is how it works:
1. The Android phone is controlling the Arduino using bluetooth.
2. Arduino is controlling the original helicopter transmitter.
3. The transmitter is programmatically controlling the helicopter.
DIY Phone-controlled helicopters with audio dongle:
There are already some fantastic existing tools in the toy market that are really helpful. Like these audio jack dongles:
These dongles capture the audio signal in the 3.5 audio jack and translate the audio signal into wireless signal.
For DIYers, the dongles should be capable of transmitting IR or other wireless signals from any smartphone or tablet (Android, iPhone, Blackberry or Windows Phone). You simply produce programmatically some audio sound from the phone. To make a touchscreen controller is so boring because the physical joysticks are way better and more precise. A phone should be a mobile command station to interact with the helicopter with a lot more intelligence. The helicopter should be able to dance with your own written program!
The easiest way to get these dongles is searching "iPhone Android Helicopter" on eBay. Then write your iOS or Android code to produce some audio signal, control your TV, fly your helicopter! Don't forget to share your exciting discoveries with the DIY Phone Gadgets community.
Imagine that you are playing your favorite music while watching a bunch of helicopters dancing in the sky, following the melody and rhythm. Yes, that's so geeky. But you are so happy. What's more beautiful than a creative mind?